Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized $\ell_0$-sparsification (1308.4084v2)

Published 19 Aug 2013 in stat.CO, math.NA, math.OC, and stat.ME

Abstract: We present an efficient method for computing A-optimal experimental designs for infinite-dimensional Bayesian linear inverse problems governed by partial differential equations (PDEs). Specifically, we address the problem of optimizing the location of sensors (at which observational data are collected) to minimize the uncertainty in the parameters estimated by solving the inverse problem, where the uncertainty is expressed by the trace of the posterior covariance. Computing optimal experimental designs (OEDs) is particularly challenging for inverse problems governed by computationally expensive PDE models with infinite-dimensional (or, after discretization, high-dimensional) parameters. To alleviate the computational cost, we exploit the problem structure and build a low-rank approximation of the parameter-to-observable map, preconditioned with the square root of the prior covariance operator. This relieves our method from expensive PDE solves when evaluating the optimal experimental design objective function and its derivatives. Moreover, we employ a randomized trace estimator for efficient evaluation of the OED objective function. We control the sparsity of the sensor configuration by employing a sequence of penalty functions that successively approximate the $\ell_0$-"norm"; this results in binary designs that characterize optimal sensor locations. We present numerical results for inference of the initial condition from spatio-temporal observations in a time-dependent advection-diffusion problem in two and three space dimensions. We find that an optimal design can be computed at a cost, measured in number of forward PDE solves, that is independent of the parameter and sensor dimensions. We demonstrate numerically that $\ell_0$-sparsified experimental designs obtained via a continuation method outperform $\ell_1$-sparsified designs.

Summary

We haven't generated a summary for this paper yet.