Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cop and robber game and hyperbolicity (1308.3987v3)

Published 19 Aug 2013 in math.CO and cs.DM

Abstract: In this note, we prove that all cop-win graphs G in the game in which the robber and the cop move at different speeds s and s' with s'<s, are \delta-hyperbolic with \delta=O(s^2). We also show that the dependency between \delta and s is linear if s-s'=\Omega(s) and G obeys a slightly stronger condition. This solves an open question from the paper (J. Chalopin et al., Cop and robber games when the robber can hide and ride, SIAM J. Discr. Math. 25 (2011) 333-359). Since any \delta-hyperbolic graph is cop-win for s=2r and s'=r+2\delta for any r\>0, this establishes a new - game-theoretical - characterization of Gromov hyperbolicity. We also show that for weakly modular graphs the dependency between \delta and s is linear for any s'<s. Using these results, we describe a simple constant-factor approximation of the hyperbolicity \delta of a graph on n vertices in O(n2) time when the graph is given by its distance-matrix.

Citations (21)

Summary

We haven't generated a summary for this paper yet.