Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving a Behavioral Repertoire for a Walking Robot (1308.3689v2)

Published 16 Aug 2013 in cs.RO

Abstract: Numerous algorithms have been proposed to allow legged robots to learn to walk. However, the vast majority of these algorithms is devised to learn to walk in a straight line, which is not sufficient to accomplish any real-world mission. Here we introduce the Transferability-based Behavioral Repertoire Evolution algorithm (TBR-Evolution), a novel evolutionary algorithm that simultaneously discovers several hundreds of simple walking controllers, one for each possible direction. By taking advantage of solutions that are usually discarded by evolutionary processes, TBR-Evolution is substantially faster than independently evolving each controller. Our technique relies on two methods: (1) novelty search with local competition, which searches for both high-performing and diverse solutions, and (2) the transferability approach, which com-bines simulations and real tests to evolve controllers for a physical robot. We evaluate this new technique on a hexapod robot. Results show that with only a few dozen short experiments performed on the robot, the algorithm learns a repertoire of con-trollers that allows the robot to reach every point in its reachable space. Overall, TBR-Evolution opens a new kind of learning algorithm that simultaneously optimizes all the achievable behaviors of a robot.

Citations (3)

Summary

We haven't generated a summary for this paper yet.