2000 character limit reached
The Szlenk Index of L_p(X) (1308.3629v1)
Published 16 Aug 2013 in math.FA
Abstract: We find an optimal upper bound on the values of the weak$*$-dentability index $Dz(X)$ in terms of the Szlenk index $Sz(X)$ of a Banach space $X$ with separable dual. Namely, if $\;Sz(X)=\omega{\alpha}$, for some $\alpha<\omega_1$, and $p\in(1,\infty)$, then $$Sz(X)\le Dz(X)\le Sz(L_p(X))\le {cases} \omega{\alpha+1} &\text{if $\alpha$ is a finite ordinal,} \omega{\alpha} &\text{if $\alpha$ is an infinite ordinal.} {cases}$$