Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Distributed DC-Programming Method and its Applications (1308.3521v2)

Published 15 Aug 2013 in cs.IT, math.IT, and math.OC

Abstract: We propose a novel decomposition framework for the distributed optimization of Difference Convex (DC)-type nonseparable sum-utility functions subject to coupling convex constraints. A major contribution of the paper is to develop for the first time a class of (inexact) best-response-like algorithms with provable convergence, where a suitably convexified version of the original DC program is iteratively solved. The main feature of the proposed successive convex approximation method is its decomposability structure across the users, which leads naturally to distributed algorithms in the primal and/or dual domain. The proposed framework is applicable to a variety of multiuser DC problems in different areas, ranging from signal processing, to communications and networking. As a case study, in the second part of the paper we focus on two examples, namely: i) a novel resource allocation problem in the emerging area of cooperative physical layer security; ii) and the renowned sum-rate maximization of MIMO Cognitive Radio networks. Our contribution in this context is to devise a class of easy-to-implement distributed algorithms with provable convergence to stationary solution of such problems. Numerical results show that the proposed distributed schemes reach performance close to (and sometimes better than) that of centralized methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.