Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Models of on-line social networks (1308.3388v1)

Published 15 Aug 2013 in cs.SI and physics.soc-ph

Abstract: We present a deterministic model for on-line social networks (OSNs) based on transitivity and local knowledge in social interactions. In the Iterated Local Transitivity (ILT) model, at each time-step and for every existing node $x$, a new node appears which joins to the closed neighbour set of $x.$ The ILT model provably satisfies a number of both local and global properties that were observed in OSNs and other real-world complex networks, such as a densification power law, decreasing average distance, and higher clustering than in random graphs with the same average degree. Experimental studies of social networks demonstrate poor expansion properties as a consequence of the existence of communities with low number of inter-community edges. Bounds on the spectral gap for both the adjacency and normalized Laplacian matrices are proved for graphs arising from the ILT model, indicating such bad expansion properties. The cop and domination number are shown to remain the same as the graph from the initial time-step $G_0$, and the automorphism group of $G_0$ is a subgroup of the automorphism group of graphs generated at all later time-steps. A randomized version of the ILT model is presented, which exhibits a tuneable densification power law exponent, and maintains several properties of the deterministic model.

Citations (38)

Summary

We haven't generated a summary for this paper yet.