Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network-based multivariate gene-set testing (1308.2771v1)

Published 13 Aug 2013 in stat.ME

Abstract: The identification of predefined groups of genes ("gene-sets") which are differentially expressed between two conditions ("gene-set analysis", or GSA) is a very popular analysis in bioinformatics. GSA incorporates biological knowledge by aggregating over genes that are believed to be functionally related. This can enhance statistical power over analyses that consider only one gene at a time. However, currently available GSA approaches are all based on univariate two-sample comparison of single genes. This means that they cannot test for differences in covariance structure between the two conditions. Yet interplay between genes is a central aspect of biological investigation and it is likely that such interplay may differ between conditions. This paper proposes a novel approach for gene-set analysis that allows for truly multivariate hypotheses, in particular differences in gene-gene networks between conditions. Testing hypotheses concerning networks is challenging due the nature of the underlying estimation problem. Our starting point is a recent, general approach for high-dimensional two-sample testing. We refine the approach and show how it can be used to perform multivariate, network-based gene-set testing. We validate the approach in simulated examples and show results using high-throughput data from several studies in cancer biology.

Summary

We haven't generated a summary for this paper yet.