2000 character limit reached
Self-mappings of the quaternionic unit ball: multiplier properties, Schwarz-Pick inequality, and Nevanlinna--Pick interpolation problem (1308.2658v1)
Published 12 Aug 2013 in math.CV and math.FA
Abstract: We study several aspects concerning slice regular functions mapping the quaternionic open unit ball into itself. We characterize these functions in terms of their Taylor coefficients at the origin and identify them as contractive multipliers of the Hardy space. In addition, we formulate and solve the Nevanlinna-Pick interpolation problem in the class of such functions presenting necessary and sufficient conditions for the existence and for the uniqueness of a solution. Finally, we describe all solutions to the problem in the indeterminate case.