Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-mappings of the quaternionic unit ball: multiplier properties, Schwarz-Pick inequality, and Nevanlinna--Pick interpolation problem (1308.2658v1)

Published 12 Aug 2013 in math.CV and math.FA

Abstract: We study several aspects concerning slice regular functions mapping the quaternionic open unit ball into itself. We characterize these functions in terms of their Taylor coefficients at the origin and identify them as contractive multipliers of the Hardy space. In addition, we formulate and solve the Nevanlinna-Pick interpolation problem in the class of such functions presenting necessary and sufficient conditions for the existence and for the uniqueness of a solution. Finally, we describe all solutions to the problem in the indeterminate case.

Summary

We haven't generated a summary for this paper yet.