Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Strong Convergence of the Optimal Linear Shrinkage Estimator for Large Dimensional Covariance Matrix (1308.2608v2)

Published 12 Aug 2013 in math.ST, math.PR, q-fin.ST, and stat.TH

Abstract: In this work we construct an optimal linear shrinkage estimator for the covariance matrix in high dimensions. The recent results from the random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The developed distribution-free estimators obey almost surely the smallest Frobenius loss over all linear shrinkage estimators for the covariance matrix. The case we consider includes the number of variables $p\rightarrow\infty$ and the sample size $n\rightarrow\infty$ so that $p/n\rightarrow c\in (0, +\infty)$. Additionally, we prove that the Frobenius norm of the sample covariance matrix tends almost surely to a deterministic quantity which can be consistently estimated.

Summary

We haven't generated a summary for this paper yet.