Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Achieving Speedup in Aggregate Risk Analysis using Multiple GPUs (1308.2572v1)

Published 12 Aug 2013 in cs.DC, cs.CE, cs.DS, and q-fin.RM

Abstract: Stochastic simulation techniques employed for the analysis of portfolios of insurance/reinsurance risk, often referred to as `Aggregate Risk Analysis', can benefit from exploiting state-of-the-art high-performance computing platforms. In this paper, parallel methods to speed-up aggregate risk analysis for supporting real-time pricing are explored. An algorithm for analysing aggregate risk is proposed and implemented for multi-core CPUs and for many-core GPUs. Experimental studies indicate that GPUs offer a feasible alternative solution over traditional high-performance computing systems. A simulation of 1,000,000 trials with 1,000 catastrophic events per trial on a typical exposure set and contract structure is performed in less than 5 seconds on a multiple GPU platform. The key result is that the multiple GPU implementation can be used in real-time pricing scenarios as it is approximately 77x times faster than the sequential counterpart implemented on a CPU.

Citations (1)

Summary

We haven't generated a summary for this paper yet.