2000 character limit reached
The extremal process of two-speed branching Brownian motion (1308.1868v4)
Published 8 Aug 2013 in math.PR
Abstract: We construct and describe the extremal process for variable speed branching Brownian motion, studied recently by Fang and Zeitouni, for the case of piecewise constant speeds; in fact for simplicity we concentrate on the case when the speed is $\sigma_1$ for $s\leq bt$ and $\sigma_2$ when $bt\leq s\leq t$. In the case $\sigma_1>\sigma_2$, the process is the concatenation of two BBM extremal processes, as expected. In the case $\sigma_1<\sigma_2$, a new family of cluster point processes arises, that are similar, but distinctively different from the BBM process. Our proofs follow the strategy of Arguin, Bovier, and Kistler.