Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial mixing and approximation algorithms for graphs with bounded connective constant (1308.1762v2)

Published 8 Aug 2013 in cs.DM, cs.DS, and math.PR

Abstract: The hard core model in statistical physics is a probability distribution on independent sets in a graph in which the weight of any independent set I is proportional to lambda|I|, where lambda > 0 is the vertex activity. We show that there is an intimate connection between the connective constant of a graph and the phenomenon of strong spatial mixing (decay of correlations) for the hard core model; specifically, we prove that the hard core model with vertex activity lambda < lambda_c(Delta + 1) exhibits strong spatial mixing on any graph of connective constant Delta, irrespective of its maximum degree, and hence derive an FPTAS for the partition function of the hard core model on such graphs. Here lambda_c(d) := dd/(d-1)d+1 is the critical activity for the uniqueness of the Gibbs measure of the hard core model on the infinite d-ary tree. As an application, we show that the partition function can be efficiently approximated with high probability on graphs drawn from the random graph model G(n,d/n) for all lambda < e/d, even though the maximum degree of such graphs is unbounded with high probability. We also improve upon Weitz's bounds for strong spatial mixing on bounded degree graphs (Weitz, 2006) by providing a computationally simple method which uses known estimates of the connective constant of a lattice to obtain bounds on the vertex activities lambda for which the hard core model on the lattice exhibits strong spatial mixing. Using this framework, we improve upon these bounds for several lattices including the Cartesian lattice in dimensions 3 and higher. Our techniques also allow us to relate the threshold for the uniqueness of the Gibbs measure on a general tree to its branching factor (Lyons, 1989).

Citations (35)

Summary

We haven't generated a summary for this paper yet.