Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Schmidt decomposition and generalized Bell basis related to Hadamard matrices (1308.1505v2)

Published 7 Aug 2013 in quant-ph

Abstract: We study the mathematical structures and relations among some quantities in the theory of quantum entanglement, such as separability, weak Schmidt decompositions, Hadamard matrices etc.. We provide an operational method to identify the Schmidt-correlated states by using weak Schmidt decomposition. We show that a mixed state is Schmidt-correlated if and only if its spectral decomposition consists of a set of pure eigenstates which can be simultaneously diagonalized in weak Schmidt decomposition, i.e. allowing for complex-valued diagonal entries. For such states, the separability is reduced to the orthogonality conditions of the vectors consisting of diagonal entries associated to the eigenstates, which is surprisingly related to the so-called complex Hadamard matrices. Using the Hadamard matrices, we provide a variety of generalized maximal entangled Bell bases.

Summary

We haven't generated a summary for this paper yet.