Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-agent Systems with Compasses (1308.0813v3)

Published 4 Aug 2013 in cs.MA

Abstract: This paper investigates agreement protocols over cooperative and cooperative--antagonistic multi-agent networks with coupled continuous-time nonlinear dynamics. To guarantee convergence for such systems, it is common in the literature to assume that the vector field of each agent is pointing inside the convex hull formed by the states of the agent and its neighbors, given that the relative states between each agent and its neighbors are available. This convexity condition is relaxed in this paper, as we show that it is enough that the vector field belongs to a strict tangent cone based on a local supporting hyperrectangle. The new condition has the natural physical interpretation of requiring shared reference directions in addition to the available local relative states. Such shared reference directions can be further interpreted as if each agent holds a magnetic compass indicating the orientations of a global frame. It is proven that the cooperative multi-agent system achieves exponential state agreement if and only if the time-varying interaction graph is uniformly jointly quasi-strongly connected. Cooperative--antagonistic multi-agent systems are also considered. For these systems, the relation has a negative sign for arcs corresponding to antagonistic interactions. State agreement may not be achieved, but instead it is shown that all the agents' states asymptotically converge, and their limits agree componentwise in absolute values if and in general only if the time-varying interaction graph is uniformly jointly strongly connected.

Citations (2)

Summary

We haven't generated a summary for this paper yet.