Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards realistic artificial benchmark for community detection algorithms evaluation (1308.0577v1)

Published 2 Aug 2013 in cs.SI and physics.soc-ph

Abstract: Assessing the partitioning performance of community detection algorithms is one of the most important issues in complex network analysis. Artificially generated networks are often used as benchmarks for this purpose. However, previous studies showed their level of realism have a significant effect on the algorithms performance. In this study, we adopt a thorough experimental approach to tackle this problem and investigate this effect. To assess the level of realism, we use consensual network topological properties. Based on the LFR method, the most realistic generative method to date, we propose two alternative random models to replace the Configuration Model originally used in this algorithm, in order to increase its realism. Experimental results show both modifications allow generating collections of community-structured artificial networks whose topological properties are closer to those encountered in real-world networks. Moreover, the results obtained with eleven popular community identification algorithms on these benchmarks show their performance decrease on more realistic networks.

Citations (38)

Summary

We haven't generated a summary for this paper yet.