Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fractional Generalization of the Poisson Processes and Some of its Properties (1307.8271v1)

Published 31 Jul 2013 in math.ST, math-ph, math.MP, stat.AP, and stat.TH

Abstract: We have provided a fractional generalization of the Poisson renewal processes by replacing the first time derivative in the relaxation equation of the survival probability by a fractional derivative of order $\alpha ~(0 < \alpha \leq 1)$. A generalized Laplacian model associated with the Mittag-Leffler distribution is examined. We also discuss some properties of this new model and its relevance to time series. Distribution of gliding sums, regression behaviors and sample path properties are studied. Finally we introduce the $q$-Mittag-Leffler process associated with the $q$-Mittag-Leffler distribution.

Summary

We haven't generated a summary for this paper yet.