Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Technical Report: An MGF-based Unified Framework to Determine the Joint Statistics of Partial Sums of Ordered i.n.d. Random Variables (1307.8199v2)

Published 31 Jul 2013 in cs.IT, cs.PF, and math.IT

Abstract: The joint statistics of partial sums of ordered random variables (RVs) are often needed for the accurate performance characterization of a wide variety of wireless communication systems. A unified analytical framework to determine the joint statistics of partial sums of ordered independent and identically distributed (i.i.d.) random variables was recently presented. However, the identical distribution assumption may not be valid in several real-world applications. With this motivation in mind, we consider in this paper the more general case in which the random variables are independent but not necessarily identically distributed (i.n.d.). More specifically, we extend the previous analysis and introduce a new more general unified analytical framework to determine the joint statistics of partial sums of ordered i.n.d. RVs. Our mathematical formalism is illustrated with an application on the exact performance analysis of the capture probability of generalized selection combining (GSC)-based RAKE receivers operating over frequency-selective fading channels with a non-uniform power delay profile. We also discussed a couple of other sample applications of the generic results presented in this work.

Summary

We haven't generated a summary for this paper yet.