Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-dimensional Parametric Mincuts for Constrained MAP Inference (1307.7793v1)

Published 30 Jul 2013 in cs.LG and cs.AI

Abstract: In this paper, we propose novel algorithms for inferring the Maximum a Posteriori (MAP) solution of discrete pairwise random field models under multiple constraints. We show how this constrained discrete optimization problem can be formulated as a multi-dimensional parametric mincut problem via its Lagrangian dual, and prove that our algorithm isolates all constraint instances for which the problem can be solved exactly. These multiple solutions enable us to even deal with `soft constraints' (higher order penalty functions). Moreover, we propose two practical variants of our algorithm to solve problems with hard constraints. We also show how our method can be applied to solve various constrained discrete optimization problems such as submodular minimization and shortest path computation. Experimental evaluation using the foreground-background image segmentation problem with statistic constraints reveals that our method is faster and its results are closer to the ground truth labellings compared with the popular continuous relaxation based methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.