Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Rate Sampling in 802.11 Systems (1307.7309v3)

Published 27 Jul 2013 in cs.NI, cs.IT, and math.IT

Abstract: In 802.11 systems, Rate Adaptation (RA) is a fundamental mechanism allowing transmitters to adapt the coding and modulation scheme as well as the MIMO transmission mode to the radio channel conditions, and in turn, to learn and track the (mode, rate) pair providing the highest throughput. So far, the design of RA mechanisms has been mainly driven by heuristics. In contrast, in this paper, we rigorously formulate such design as an online stochastic optimisation problem. We solve this problem and present ORS (Optimal Rate Sampling), a family of (mode, rate) pair adaptation algorithms that provably learn as fast as it is possible the best pair for transmission. We study the performance of ORS algorithms in both stationary radio environments where the successful packet transmission probabilities at the various (mode, rate) pairs do not vary over time, and in non-stationary environments where these probabilities evolve. We show that under ORS algorithms, the throughput loss due to the need to explore sub-optimal (mode, rate) pairs does not depend on the number of available pairs, which is a crucial advantage as evolving 802.11 standards offer an increasingly large number of (mode, rate) pairs. We illustrate the efficiency of ORS algorithms (compared to the state-of-the-art algorithms) using simulations and traces extracted from 802.11 test-beds.

Citations (44)

Summary

We haven't generated a summary for this paper yet.