Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Learning for Player Localization in Sports Video (1307.7198v1)

Published 27 Jul 2013 in cs.CV and cs.AI

Abstract: This paper introduces a novel self-learning framework that automates the label acquisition process for improving models for detecting players in broadcast footage of sports games. Unlike most previous self-learning approaches for improving appearance-based object detectors from videos, we allow an unknown, unconstrained number of target objects in a more generalized video sequence with non-static camera views. Our self-learning approach uses a latent SVM learning algorithm and deformable part models to represent the shape and colour information of players, constraining their motions, and learns the colour of the playing field by a gentle Adaboost algorithm. We combine those image cues and discover additional labels automatically from unlabelled data. In our experiments, our approach exploits both labelled and unlabelled data in sparsely labelled videos of sports games, providing a mean performance improvement of over 20% in the average precision for detecting sports players and improved tracking, when videos contain very few labelled images.

Citations (13)

Summary

We haven't generated a summary for this paper yet.