Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-view Laplacian Support Vector Machines (1307.7024v1)

Published 26 Jul 2013 in cs.LG and stat.ML

Abstract: We propose a new approach, multi-view Laplacian support vector machines (SVMs), for semi-supervised learning under the multi-view scenario. It integrates manifold regularization and multi-view regularization into the usual formulation of SVMs and is a natural extension of SVMs from supervised learning to multi-view semi-supervised learning. The function optimization problem in a reproducing kernel Hilbert space is converted to an optimization in a finite-dimensional Euclidean space. After providing a theoretical bound for the generalization performance of the proposed method, we further give a formulation of the empirical Rademacher complexity which affects the bound significantly. From this bound and the empirical Rademacher complexity, we can gain insights into the roles played by different regularization terms to the generalization performance. Experimental results on synthetic and real-world data sets are presented, which validate the effectiveness of the proposed multi-view Laplacian SVMs approach.

Citations (115)

Summary

We haven't generated a summary for this paper yet.