Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concentration of the Kirchhoff index for Erdos-Renyi graphs (1307.6398v2)

Published 24 Jul 2013 in cs.IT and math.IT

Abstract: Given an undirected graph, the resistance distance between two nodes is the resistance one would measure between these two nodes in an electrical network if edges were resistors. Summing these distances over all pairs of nodes yields the so-called Kirchhoff index of the graph, which measures its overall connectivity. In this work, we consider Erdos-Renyi random graphs. Since the graphs are random, their Kirchhoff indices are random variables. We give formulas for the expected value of the Kirchhoff index and show it concentrates around its expectation. We achieve this by studying the trace of the pseudoinverse of the Laplacian of Erdos-Renyi graphs. For synchronization (a class of estimation problems on graphs) our results imply that acquiring pairwise measurements uniformly at random is a good strategy, even if only a vanishing proportion of the measurements can be acquired.

Citations (5)

Summary

We haven't generated a summary for this paper yet.