Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-normalized Cramér type moderate deviations for the maximum of sums (1307.6044v1)

Published 23 Jul 2013 in math.ST and stat.TH

Abstract: Let $X_1,X_2,...$ be independent random variables with zero means and finite variances, and let $S_n=\sum_{i=1}nX_i$ and $V2_n=\sum_{i=1}nX2_i$. A Cram\'{e}r type moderate deviation for the maximum of the self-normalized sums $\max_{1\leq k\leq n}S_k/V_n$ is obtained. In particular, for identically distributed $X_1,X_2,...,$ it is proved that $P(\max_{1\leq k\leq n}S_k\geq xV_n)/(1-\Phi (x))\rightarrow2$ uniformly for $0<x\leq\mathrm{o}(n{1/6})$ under the optimal finite third moment of $X_1$.

Summary

We haven't generated a summary for this paper yet.