Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Benchmark Approach to Risk-Minimization under Partial Information (1307.6036v1)

Published 23 Jul 2013 in q-fin.PM and math.PR

Abstract: In this paper we study a risk-minimizing hedging problem for a semimartingale incomplete financial market where d+1 assets are traded continuously and whose price is expressed in units of the num\'{e}raire portfolio. According to the so-called benchmark approach, we investigate the (benchmarked) risk-minimizing strategy in the case where there are restrictions on the available information. More precisely, we characterize the optimal strategy as the integrand appearing in the Galtchouk-Kunita-Watanabe decomposition of the benchmarked claim under partial information and provide its description in terms of the integrands in the classical Galtchouk-Kunita-Watanabe decomposition under full information via dual predictable projections. Finally, we apply the results in the case of a Markovian jump-diffusion driven market model where the assets prices dynamics depend on a stochastic factor which is not observable by investors.

Summary

We haven't generated a summary for this paper yet.