Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graphs cospectral with a friendship graph or its complement (1307.5411v1)

Published 20 Jul 2013 in math.CO

Abstract: Let $n$ be any positive integer and let $F_n$ be the friendship (or Dutch windmill) graph with $2n+1$ vertices and $3n$ edges. Here we study graphs with the same adjacency spectrum as the $F_n$. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let $G$ be a graph cospectral with $F_n$. Here we prove that if $G$ has no cycle of length 4 or 5, then $G\cong F_n$. Moreover if $G$ is connected and planar then $G\cong F_n$. All but one of connected components of $G$ are isomorphic to $K_2$. The complement $\bar{F_n}$ of the friendship graph is determined by its adjacency eigenvalues, that is, if $\bar{F_n}$ is cospectral with a graph $H$, then $H\cong \bar{F_n}$.

Summary

We haven't generated a summary for this paper yet.