Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

First-Come-First-Served for Online Slot Allocation and Huffman Coding (1307.5296v2)

Published 19 Jul 2013 in cs.DS, cs.IT, and math.IT

Abstract: Can one choose a good Huffman code on the fly, without knowing the underlying distribution? Online Slot Allocation (OSA) models this and similar problems: There are n slots, each with a known cost. There are n items. Requests for items are drawn i.i.d. from a fixed but hidden probability distribution p. After each request, if the item, i, was not previously requested, then the algorithm (knowing the slot costs and the requests so far, but not p) must place the item in some vacant slot j(i). The goal is to minimize the sum, over the items, of the probability of the item times the cost of its assigned slot. The optimal offline algorithm is trivial: put the most probable item in the cheapest slot, the second most probable item in the second cheapest slot, etc. The optimal online algorithm is First Come First Served (FCFS): put the first requested item in the cheapest slot, the second (distinct) requested item in the second cheapest slot, etc. The optimal competitive ratios for any online algorithm are 1+H(n-1) ~ ln n for general costs and 2 for concave costs. For logarithmic costs, the ratio is, asymptotically, 1: FCFS gives cost opt + O(log opt). For Huffman coding, FCFS yields an online algorithm (one that allocates codewords on demand, without knowing the underlying probability distribution) that guarantees asymptotically optimal cost: at most opt + 2 log(1+opt) + 2.

Summary

We haven't generated a summary for this paper yet.