Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the gap of Hamiltonians for the adiabatic simulation of quantum circuits (1307.4993v1)

Published 18 Jul 2013 in quant-ph

Abstract: The time or cost of simulating a quantum circuit by adiabatic evolution is determined by the spectral gap of the Hamiltonians involved in the simulation. In "standard" constructions based on Feynman's Hamiltonian, such a gap decreases polynomially with the number of gates in the circuit, L. Because a larger gap implies a smaller cost, we study the limits of spectral gap amplification in this context. We show that, under some assumptions on the ground states and the cost of evolving with the Hamiltonians (which apply to the standard constructions), an upper bound on the gap of order 1/L follows. In addition, if the Hamiltonians satisfy a frustration-free property, the upper bound is of order 1/L2. Our proofs use recent results on adiabatic state transformations, spectral gap amplification, and the simulation of continuous-time quantum query algorithms. They also consider a reduction from the unstructured search problem, whose lower bound in the oracle cost translates into the upper bounds in the gaps. The impact of our results is that improving the gap beyond that of standard constructions (i.e., 1/L2), if possible, is challenging.

Summary

We haven't generated a summary for this paper yet.