Papers
Topics
Authors
Recent
Search
2000 character limit reached

High-Fidelity Coding with Correlated Neurons

Published 12 Jul 2013 in q-bio.NC | (1307.3591v3)

Abstract: Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these correlations to be detrimental to the fidelity of population codes or at best marginally favorable compared to independent codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli encoded--the capacity--can be enhanced by similarly large factors. These effects do not necessitate unrealistic correlation values and can occur for populations with a few tens of neurons. We further show that both effects benefit from heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of correlation. In the limit of perfect coding, this pattern leads to a `lock-in' of response probabilities that eliminates variability in the subspace relevant for stimulus discrimination. We discuss the nature of this pattern and suggest experimental tests to identify it.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.