Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Strong Banach property (T) for SL(3,R) (1307.2475v3)

Published 9 Jul 2013 in math.GR, math.FA, and math.MG

Abstract: We prove that SL(3,R) has Strong Banach property (T) in Lafforgue's sense with respect to the Banach spaces that are $\theta>0$ interpolation spaces (for the complex interpolation method) between an arbitrary Banach space and a Banach space with sufficiently good type and cotype. As a consequence, every action of SL(3,R) or its lattices by affine isometries on such a Banach space X has a fixed point, and the expanders contructed from SL(3,Z) do not admit a coarse embedding into X. We also prove a quantitative decay of matrix coefficients (Howe-Moore property) for representations with small exponential growth of SL(3,R) on X. This class of Banach spaces contains many superreflexive spaces and some nonreflexive spaces as well. We see no obstruction for this class to be equal to all spaces with nontrivial type.

Summary

We haven't generated a summary for this paper yet.