Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algorithmic Framework for Strategic Fair Division (1307.2225v2)

Published 8 Jul 2013 in cs.GT

Abstract: We study the paradigmatic fair division problem of allocating a divisible good among agents with heterogeneous preferences, commonly known as cake cutting. Classical cake cutting protocols are susceptible to manipulation. Do their strategic outcomes still guarantee fairness? To address this question we adopt a novel algorithmic approach, by designing a concrete computational framework for fair division---the class of Generalized Cut and Choose (GCC) protocols}---and reasoning about the game-theoretic properties of algorithms that operate in this model. The class of GCC protocols includes the most important discrete cake cutting protocols, and turns out to be compatible with the study of fair division among strategic agents. In particular, GCC protocols are guaranteed to have approximate subgame perfect Nash equilibria, or even exact equilibria if the protocol's tie-breaking rule is flexible. We further observe that the (approximate) equilibria of proportional GCC protocols---which guarantee each of the $n$ agents a $1/n$-fraction of the cake---must be (approximately) proportional. Finally, we design a protocol in this framework with the property that its Nash equilibrium allocations coincide with the set of (contiguous) envy-free allocations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.