Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Growth, entropy and commutativity of algebras satisfying prescribed relations (1307.1839v3)

Published 7 Jul 2013 in math.RA

Abstract: In 1964, Golod and Shafarevich found that, provided that the number of relations of each degree satisfy some bounds, there exist infinitely dimensional algebras satisfying the relations. These algebras are called Golod-Shafarevich algebras. This paper provides bounds for the growth function on images of Golod-Shafarevich algebras based upon the number of defining relations. This extends results from [32], [33]. Lower bounds of growth for constructed algebras are also obtained, permitting the construction of algebras with various growth functions of various entropies. In particular, the paper answers a question by Drensky [7] by constructing algebras with subexponential growth satisfying given relations, under mild assumption on the number of generating relations of each degree. Examples of nil algebras with neither polynomial nor exponential growth over uncountable fields are also constructed, answering a question by Zelmanov [40]. Recently, several open questions concerning the commutativity of algebras satisfying a prescribed number of defining relations have arisen from the study of noncommutative singularities. Additionally, this paper solves one such question, posed by Donovan and Wemyss in [8].

Summary

We haven't generated a summary for this paper yet.