Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending mixtures of factor models using the restricted multivariate skew-normal distribution (1307.1748v1)

Published 6 Jul 2013 in stat.ME

Abstract: The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted version of the multivariate skew-normal distribution to model the distribution of the latent component factors, called mixtures of skew-normal factor analyzers (MSNFA). The proposed MSNFA model allows us to relax the need for the normality assumption for the latent factors in order to accommodate skewness in the observed data. The MSNFA model thus provides an approach to model-based density estimation and clustering of high-dimensional data exhibiting asymmetric characteristics. A computationally feasible ECM algorithm is developed for computing the maximum likelihood estimates of the parameters. Model selection can be made on the basis of three commonly used information-based criteria. The potential of the proposed methodology is exemplified through applications to two real examples, and the results are compared with those obtained from fitting the MFA model.

Summary

We haven't generated a summary for this paper yet.