Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-based Approach to Automatic Taxonomy Generation (GraBTax) (1307.1718v2)

Published 5 Jul 2013 in cs.IR

Abstract: We propose a novel graph-based approach for constructing concept hierarchy from a large text corpus. Our algorithm, GraBTax, incorporates both statistical co-occurrences and lexical similarity in optimizing the structure of the taxonomy. To automatically generate topic-dependent taxonomies from a large text corpus, GraBTax first extracts topical terms and their relationships from the corpus. The algorithm then constructs a weighted graph representing topics and their associations. A graph partitioning algorithm is then used to recursively partition the topic graph into a taxonomy. For evaluation, we apply GraBTax to articles, primarily computer science, in the CiteSeerX digital library and search engine. The quality of the resulting concept hierarchy is assessed by both human judges and comparison with Wikipedia categories.

Citations (15)

Summary

We haven't generated a summary for this paper yet.