A singularly perturbed Dirichlet problem for the Poisson equation in a periodically perforated domain. A functional analytic approach (1307.1612v1)
Abstract: Let $\Omega$ be a sufficiently regular bounded open connected subset of $\mathbb{R}n$ such that $0 \in \Omega$ and that $\mathbb{R}n \setminus \mathrm{cl}\Omega$ is connected. Then we take $(q_{11},\dots, q_{nn})\in ]0,+\infty[n$ and $p \in Q\equiv \prod_{j=1}{n}]0,q_{jj}[$. If $\epsilon$ is a small positive number, then we define the periodically perforated domain $\mathbb{S}[\Omega_{p,\epsilon}]{-} \equiv \mathbb{R}n\setminus \cup_{z \in \mathbb{Z}n}\mathrm{cl}\bigl(p+\epsilon \Omega +\sum_{j=1}n (q_{jj}z_j)e_j\bigr)$, where ${e_1,\dots,e_n}$ is the canonical basis of $\mathbb{R}n$. For $\epsilon$ small and positive, we introduce a particular Dirichlet problem for the Poisson equation in the set $\mathbb{S}[\Omega_{p,\epsilon}]{-}$. Namely, we consider a Dirichlet condition on the boundary of the set $p+\epsilon \Omega$, together with a periodicity condition. Then we show real analytic continuation properties of the solution as a function of $\epsilon$, of the Dirichlet datum on $p+\epsilon \partial \Omega$, and of the Poisson datum, around a degenerate triple with $\epsilon=0$.