Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressed Pattern-Matching with Ranked Variables in Zimin Words (1307.1560v1)

Published 5 Jul 2013 in cs.DS

Abstract: Zimin words are very special finite words which are closely related to the pattern-avoidability problem. This problem consists in testing if an instance of a given pattern with variables occurs in almost all words over any finite alphabet. The problem is not well understood, no polynomial time algorithm is known and its NP-hardness is also not known. The pattern-avoidability problem is equivalent to searching for a pattern (with variables) in a Zimin word. The main difficulty is potentially exponential size of Zimin words. We use special properties of Zimin words, especially that they are highly compressible, to design efficient algorithms for special version of the pattern-matching, called here ranked matching. It gives a new interpretation of Zimin algorithm in compressed setting. We discuss the structure of rankings of variables and compressed representations of values of variables. Moreover, for a ranked matching we present efficient algorithms to find the shortest instance and the number of valuations of instances of the pattern.

Citations (2)

Summary

We haven't generated a summary for this paper yet.