Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diophantine properties of nilpotent Lie groups (1307.1489v2)

Published 4 Jul 2013 in math.GR and math.NT

Abstract: A finitely generated subgroup {\Gamma} of a real Lie group G is said to be Diophantine if there is \beta > 0 such that non-trivial elements in the word ball B_\Gamma(n) centered at the identity never approach the identity of G closer than |B_{\Gamma} (n)|{-\beta}. A Lie group G is said to be Diophantine if for every k > 0, a random k-tuple in G generates a Diophantine subgroup. Semi-simple Lie groups are conjectured to be Diophantine but very little is proven in this direction. We give a characterization of Diophantine nilpotent Lie groups in terms of the ideal of laws of their Lie algebra. In particular we show that nilpotent Lie groups of class at most 5, or derived length at most 2, as well as rational nilpotent Lie groups are Diophantine. We also find that there are non Diophantine nilpotent and solvable (non nilpotent) Lie groups.

Summary

We haven't generated a summary for this paper yet.