Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Byzantine Convex Consensus: An Optimal Algorithm (1307.1332v2)

Published 4 Jul 2013 in cs.DC

Abstract: Much of the past work on asynchronous approximate Byzantine consensus has assumed scalar inputs at the nodes [4, 8]. Recent work has yielded approximate Byzantine consensus algorithms for the case when the input at each node is a d-dimensional vector, and the nodes must reach consensus on a vector in the convex hull of the input vectors at the fault-free nodes [9, 13]. The d-dimensional vectors can be equivalently viewed as points in the d-dimensional Euclidean space. Thus, the algorithms in [9, 13] require the fault-free nodes to decide on a point in the d-dimensional space. In our recent work [arXiv:/1307.1051], we proposed a generalization of the consensus problem, namely Byzantine convex consensus (BCC), which allows the decision to be a convex polytope in the d-dimensional space, such that the decided polytope is within the convex hull of the input vectors at the fault-free nodes. We also presented an asynchronous approximate BCC algorithm. In this paper, we propose a new BCC algorithm with optimal fault-tolerance that also agrees on a convex polytope that is as large as possible under adversarial conditions. Our prior work [arXiv:/1307.1051] does not guarantee the optimality of the output polytope.

Citations (6)

Summary

We haven't generated a summary for this paper yet.