Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Classifying the Divisor Involutions in Calabi-Yau Threefolds (1307.1139v3)

Published 3 Jul 2013 in hep-th

Abstract: In order to support the odd moduli in models of (type IIB) string compactification, we classify the Calabi-Yau threefolds with h{1,1}<=4 which exhibit pairs of identical divisors, with different line-bundle charges, mapping to each other under possible divisor exchange involutions. For this purpose, the divisors of interest are identified as completely rigid surface, Wilson surface, K3 surface and some other deformation surfaces. Subsequently, various possible exchange involutions are examined under the symmetry of Stanley-Reisner Ideal. In addition, we search for the Calabi-Yau theefolds which contain a divisor with several disjoint components. Under certain reflection involution, such spaces also have nontrivial odd components in (1,1)-cohomology class. String compactifications on such Calabi-Yau orientifolds with non-zero h{1,1}_-(CY_3/\sigma) could be promising for concrete model building in both particle physics and cosmology. In the spirit of using such Calabi-Yau orientifolds in the context of LARGE volume scenario, we also present some concrete examples of (strong/weak) swiss-cheese type volume form.

Citations (62)

Summary

We haven't generated a summary for this paper yet.