Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularized Spherical Polar Fourier Diffusion MRI with Optimal Dictionary Learning (1307.0776v1)

Published 2 Jul 2013 in cs.CV

Abstract: Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods were proposed to reconstruct diffusion-weighted signal and the Ensemble Average Propagator (EAP), and there are two kinds of Dictionary Learning (DL) methods: 1) Discrete Representation DL (DR-DL), and 2) Continuous Representation DL (CR-DL). DR-DL is susceptible to numerical inaccuracy owing to interpolation and regridding errors in a discretized q-space. In this paper, we propose a novel CR-DL approach, called Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI) for effective compressed-sensing reconstruction of the q-space diffusion-weighted signal and the EAP. In DL-SPFI, an dictionary that sparsifies the signal is learned from the space of continuous Gaussian diffusion signals. The learned dictionary is then adaptively applied to different voxels using a weighted LASSO framework for robust signal reconstruction. The adaptive dictionary is proved to be optimal. Compared with the start-of-the-art CR-DL and DR-DL methods proposed by Merlet et al. and Bilgic et al., espectively, our work offers the following advantages. First, the learned dictionary is proved to be optimal for Gaussian diffusion signals. Second, to our knowledge, this is the first work to learn a voxel-adaptive dictionary. The importance of the adaptive dictionary in EAP reconstruction will be demonstrated theoretically and empirically. Third, optimization in DL-SPFI is only performed in a small subspace resided by the SPF coefficients, as opposed to the q-space approach utilized by Merlet et al. The experiment results demonstrate the advantages of DL-SPFI over the original SPF basis and Bilgic et al.'s method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jian Cheng (127 papers)
  2. Tianzi Jiang (6 papers)
  3. Rachid Deriche (5 papers)
  4. Dinggang Shen (153 papers)
  5. Pew-Thian Yap (38 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.