Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Fukaya category of a Fano hypersurface in projective space (1306.4143v5)

Published 18 Jun 2013 in math.SG

Abstract: This paper is about the Fukaya category of a Fano hypersurface $X \subset \mathbb{CP}n$. Because these symplectic manifolds are monotone, both the analysis and the algebra involved in the definition of the Fukaya category simplify considerably. The first part of the paper is devoted to establishing the main structures of the Fukaya category in the monotone case: the closed-open string maps, weak proper Calabi-Yau structure, Abouzaid's split-generation criterion, and their analogues when weak bounding cochains are included. We then turn to computations of the Fukaya category of the hypersurface $X$: we construct a configuration of monotone Lagrangian spheres in $X$, and compute the associated disc potential. The result coincides with the Hori-Vafa superpotential for the mirror of $X$ (up to a constant shift in the Fano index $1$ case). As a consequence, we give a proof of Kontsevich's homological mirror symmetry conjecture for $X$. We also explain how to extract non-trivial information about Gromov-Witten invariants of $X$ from its Fukaya category.

Summary

We haven't generated a summary for this paper yet.