Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Truth Table Minimization of Computational Models (1306.3766v1)

Published 17 Jun 2013 in cs.CC

Abstract: Complexity theory offers a variety of concise computational models for computing boolean functions - branching programs, circuits, decision trees and ordered binary decision diagrams to name a few. A natural question that arises in this context with respect to any such model is this: Given a function f:{0,1}n \to {0,1}, can we compute the optimal complexity of computing f in the computational model in question? (according to some desirable measure). A critical issue regarding this question is how exactly is f given, since a more elaborate description of f allows the algorithm to use more computational resources. Among the possible representations are black-box access to f (such as in computational learning theory), a representation of f in the desired computational model or a representation of f in some other model. One might conjecture that if f is given as its complete truth table (i.e., a list of f's values on each of its 2n possible inputs), the most elaborate description conceivable, then any computational model can be efficiently computed, since the algorithm computing it can run poly(2n) time. Several recent studies show that this is far from the truth - some models have efficient and simple algorithms that yield the desired result, others are believed to be hard, and for some models this problem remains open. In this thesis we will discuss the computational complexity of this question regarding several common types of computational models. We shall present several new hardness results and efficient algorithms, as well as new proofs and extensions for known theorems, for variants of decision trees, formulas and branching programs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.