Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modal Interface Automata (1306.3050v2)

Published 13 Jun 2013 in cs.LO, cs.FL, and cs.SE

Abstract: De Alfaro and Henzinger's Interface Automata (IA) and Nyman et al.'s recent combination IOMTS of IA and Larsen's Modal Transition Systems (MTS) are established frameworks for specifying interfaces of system components. However, neither IA nor IOMTS consider conjunction that is needed in practice when a component shall satisfy multiple interfaces, while Larsen's MTS-conjunction is not closed and Bene\v{s} et al.'s conjunction on disjunctive MTS does not treat internal transitions. In addition, IOMTS-parallel composition exhibits a compositionality defect. This article defines conjunction (and also disjunction) on IA and disjunctive MTS and proves the operators to be 'correct', i.e., the greatest lower bounds (least upper bounds) wrt. IA- and resp. MTS-refinement. As its main contribution, a novel interface theory called Modal Interface Automata (MIA) is introduced: MIA is a rich subset of IOMTS featuring explicit output-must-transitions while input-transitions are always allowed implicitly, is equipped with compositional parallel, conjunction and disjunction operators, and allows a simpler embedding of IA than Nyman's. Thus, it fixes the shortcomings of related work, without restricting designers to deterministic interfaces as Raclet et al.'s modal interface theory does.

Citations (34)

Summary

We haven't generated a summary for this paper yet.