Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexibly-bounded Rationality and Marginalization of Irrationality Theories for Decision Making (1306.2025v1)

Published 9 Jun 2013 in cs.AI

Abstract: In this paper the theory of flexibly-bounded rationality which is an extension to the theory of bounded rationality is revisited. Rational decision making involves using information which is almost always imperfect and incomplete together with some intelligent machine which if it is a human being is inconsistent to make decisions. In bounded rationality, this decision is made irrespective of the fact that the information to be used is incomplete and imperfect and that the human brain is inconsistent and thus this decision that is to be made is taken within the bounds of these limitations. In the theory of flexibly-bounded rationality, advanced information analysis is used, the correlation machine is applied to complete missing information and artificial intelligence is used to make more consistent decisions. Therefore flexibly-bounded rationality expands the bounds within which rationality is exercised. Because human decision making is essentially irrational, this paper proposes the theory of marginalization of irrationality in decision making to deal with the problem of satisficing in the presence of irrationality.

Citations (9)

Summary

We haven't generated a summary for this paper yet.