Semigroups of Partial Isometries (1306.1973v3)
Abstract: We study self-adjoint semigroups of partial isometries on a Hilbert space. These semigroups coincide precisely with faithful representations of abstract inverse semigroups. Groups of unitary operators are specialized examples of self-adjoint semigroups of partial isometries. We obtain a general structure result showing that every self-adjoint semigroup of partial isometries consists of "generalized weighted composition" operators on a space of square-integrable Hilbert-space valued functions. If the semigroup is irreducible and contains a compact operator then the underlying measure space is purely atomic, so that the semigroup is represented as "zero-unitary" matrices. In this case it is not even required that the semigroup be self-adjoint.