Matrix Partitions of Split Graphs
Abstract: Matrix partition problems generalize a number of natural graph partition problems, and have been studied for several standard graph classes. We prove that each matrix partition problem has only finitely many minimal obstructions for split graphs. Previously such a result was only known for the class of cographs. (In particular, there are matrix partition problems which have infinitely many minimal chordal obstructions.) We provide (close) upper and lower bounds on the maximum size of a minimal split obstruction. This shows for the first time that some matrices have exponential-sized minimal obstructions of any kind (not necessarily split graphs). We also discuss matrix partitions for bipartite and co-bipartite graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.