Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gauge Theory for Spectral Triples and the Unbounded Kasparov Product (1306.1951v2)

Published 8 Jun 2013 in math.KT, math-ph, math.MP, math.OA, and math.QA

Abstract: We explore factorizations of noncommutative Riemannian spin geometries over commutative base manifolds in unbounded KK-theory. After setting up the general formalism of unbounded KK-theory and improving upon the construction of internal products, we arrive at a natural bundle-theoretic formulation of gauge theories arising from spectral triples. We find that the unitary group of a given noncommutative spectral triple arises as the group of endomorphisms of a certain Hilbert bundle; the inner fluctuations split in terms of connections on, and endomorphisms of, this Hilbert bundle. Moreover, we introduce an extended gauge group of unitary endomorphisms and a corresponding notion of gauge fields. We work out several examples in full detail, to wit Yang--Mills theory, the noncommutative torus and the $\theta$-deformed Hopf fibration over the two-sphere.

Summary

We haven't generated a summary for this paper yet.