2000 character limit reached
Unit Grid Intersection Graphs: Recognition and Properties (1306.1855v1)
Published 7 Jun 2013 in math.CO and cs.DM
Abstract: It has been known since 1991 that the problem of recognizing grid intersection graphs is NP-complete. Here we use a modified argument of the above result to show that even if we restrict to the class of unit grid intersection graphs (UGIGs), the recognition remains hard, as well as for all graph classes contained inbetween. The result holds even when considering only graphs with arbitrarily large girth. Furthermore, we ask the question of representing UGIGs on grids of minimal size. We show that the UGIGs that can be represented in a square of side length 1+epsilon, for a positive epsilon no greater than 1, are exactly the orthogonal ray graphs, and that there exist families of trees that need an arbitrarily large grid.