Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Loop Calculus and Bootstrap-Belief Propagation for Perfect Matchings on Arbitrary Graphs (1306.1267v1)

Published 5 Jun 2013 in cond-mat.stat-mech, cs.AI, and math.PR

Abstract: This manuscript discusses computation of the Partition Function (PF) and the Minimum Weight Perfect Matching (MWPM) on arbitrary, non-bipartite graphs. We present two novel problem formulations - one for computing the PF of a Perfect Matching (PM) and one for finding MWPMs - that build upon the inter-related Bethe Free Energy, Belief Propagation (BP), Loop Calculus (LC), Integer Linear Programming (ILP) and Linear Programming (LP) frameworks. First, we describe an extension of the LC framework to the PM problem. The resulting formulas, coined (fractional) Bootstrap-BP, express the PF of the original model via the BFE of an alternative PM problem. We then study the zero-temperature version of this Bootstrap-BP formula for approximately solving the MWPM problem. We do so by leveraging the Bootstrap-BP formula to construct a sequence of MWPM problems, where each new problem in the sequence is formed by contracting odd-sized cycles (or blossoms) from the previous problem. This Bootstrap-and-Contract procedure converges reliably and generates an empirically tight upper bound for the MWPM. We conclude by discussing the relationship between our iterative procedure and the famous Blossom Algorithm of Edmonds '65 and demonstrate the performance of the Bootstrap-and-Contract approach on a variety of weighted PM problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.