Papers
Topics
Authors
Recent
2000 character limit reached

Exponential convergence to equilibrium in cellular automata asymptotically emulating identity

Published 5 Jun 2013 in nlin.CG | (1306.1189v2)

Abstract: We consider the problem of finding the density of 1's in a configuration obtained by $n$ iterations of a given cellular automaton (CA) rule, starting from disordered initial condition. While this problems is intractable in full generality for a general CA rule, we argue that for some sufficiently simple classes of rules it is possible to express the density in terms of elementary functions. Rules asymptotically emulating identity are one example of such a class, and density formulae have been previously obtained for several of them. We show how to obtain formulae for density for two further rules in this class, 160 and 168, and postulate likely expression for density for eight other rules. Our results are valid for arbitrary initial density. Finally, we conjecture that the density of 1's for CA rules asymptotically emulating identity always approaches the equilibrium point exponentially fast.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.