Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Iterative Decoding and Turbo Equalization: The Z-Crease Phenomenon (1306.0585v1)

Published 3 Jun 2013 in cs.IT, math.IT, and nlin.CD

Abstract: Iterative probabilistic inference, popularly dubbed the soft-iterative paradigm, has found great use in a wide range of communication applications, including turbo decoding and turbo equalization. The classic approach of analyzing the iterative approach inevitably use the statistical and information-theoretical tools that bear ensemble-average flavors. This paper consider the per-block error rate performance, and analyzes it using nonlinear dynamical theory. By modeling the iterative processor as a nonlinear dynamical system, we report a universal "Z-crease phenomenon:" the zig-zag or up-and-down fluctuation -- rather than the monotonic decrease -- of the per-block errors, as the number of iteration increases. Using the turbo decoder as an example, we also report several interesting motion phenomenons which were not previously reported, and which appear to correspond well with the notion of "pseudo codewords" and "stopping/trapping sets." We further propose a heuristic stopping criterion to control Z-crease and identify the best iteration. Our stopping criterion is most useful for controlling the worst-case per-block errors, and helps to significantly reduce the average-iteration numbers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)